- Comment trouvez-vous la stabilité avec Nyquist Plot?
- Comment déterminez-vous la stabilité d'un intrigue Nyquist dans Matlab?
- Quel est le critère Nyquist pour la stabilité d'une boucle fermée numérique?
- Comment allez-vous utiliser un tracé de Nyquist pour l'analyse de stabilité d'un circuit d'amplificateur de courant?
Comment trouvez-vous la stabilité avec Nyquist Plot?
La stabilité est déterminée en examinant le nombre d'encerclements du point (−1, 0). La plage de gains sur laquelle le système sera stable peut être déterminé en regardant les traversées de l'axe réel. Le tracé de Nyquist peut fournir des informations sur la forme de la fonction de transfert.
Comment déterminez-vous la stabilité d'un intrigue Nyquist dans Matlab?
Selon le tracé de Nyquist n = 0 (pas d'encerclement du point critique par le tracé de Nyquist). D'où z = n + p = 0; implique qu'aucun pôle d'une fonction de transfert en boucle fermée n'est dans RHS du plan S, donc le système est stable.
Quel est le critère Nyquist pour la stabilité d'une boucle fermée numérique?
Le théorème de Nyquist déclare que: C = −N + O, et C = 0 implique la stabilité du système de boucle fermée. Cela implique que «pour qu'un système soit stable en boucle fermée, le nombre d'encerclements du point (−1 + j0) par le locus de g (jω), −∞ <Ω< +∞ Dans la direction dans le sens antihoraire est égal au nombre de pôles de boucle ouverte instables."
Comment allez-vous utiliser un tracé de Nyquist pour l'analyse de stabilité d'un circuit d'amplificateur de courant?
Avec un tracé de Nyquist, vous pouvez simplement observer la distance entre (–1, 0) et le point auquel la courbe traverse l'axe réel négatif. Plus de distance entre ces deux points correspond à une marge de gain plus importante et, par conséquent, à un circuit qui est plus fiable stable.