- Comment trouvez-vous la sortie en régime permanent d'une fonction de transfert?
- Comment calculer l'état d'équilibre?
- Quelle est la sortie en régime permanent de la fonction de transfert pour l'entrée de la rampe unitaire?
- Comment trouvez-vous le gain à l'état d'équilibre d'une réponse étape?
Comment trouvez-vous la sortie en régime permanent d'une fonction de transfert?
La valeur à l'état d'équilibre est également appelée valeur finale. Le théorème de la valeur finale vous permet de calculer cette valeur à l'état d'équilibre assez facilement: limt → ∞y (t) = limz → 0z ∗ y (z), où y (t) est dans le domaine temporel et y (z) est dans la fréquence domaine. Donc, si votre fonction de transfert est h (z) = y (z) x (z) =. 8Z (z−.
Comment calculer l'état d'équilibre?
L'état d'équilibre est obtenu en résolvant les équations dynamiques pour dx / dt = 0. Les valeurs en régime permanent des variables système et certains paramètres de ce processus sont donnés ci-dessous.
Quelle est la sortie en régime permanent de la fonction de transfert pour l'entrée de la rampe unitaire?
L'erreur en régime permanent résultant à une entrée de rampe est donnée comme: e (∞) | ramp = ∑1pi = 2. Pour la vérification, la réponse du système en boucle fermée est tracée sur la figure 4.3.
Comment trouvez-vous le gain à l'état d'équilibre d'une réponse étape?
La valeur en régime permanent de la réponse de l'étape unitaire du système est appelée son gain CC. C'est aussi le rapport de la sortie du système et des signaux d'entrée lorsque les transitoires s'éteignent. Gain cc = y (∞) = limt → ∞y (t) pour u (t) = 1 (t). Par conséquent, par définition, gain cc = y (∞) = 1/2.